Technology Innovation Institute’s ARRC releases RLtools
ABU DHABI, July 29, 2024
The Technology Innovation Institute’s (TII) Autonomous Robotics Research Centre (ARRC) has released RLtools, an open-source, reinforcement learning library that addresses critical training challenges in autonomous systems.
Developed in collaboration with New York University’s Agile Robotics and Perception Lab, as part of a joint project, ‘Learning to Fly in Seconds’, this achievement marks the first instance of training high-speed, end-to-end drone controllers on a standard commercial grade computer.
Historically, researchers and engineers have encountered roadblocks in their efforts to seamlessly integrate autonomous systems into real-world scenarios. These challenges include the excessive demand for computational power and time in training AI models, reliance on sophisticated computational resources, the persistent gap between simulated and real-world environments, and compatibility issues with standard deep learning frameworks. These challenges have hindered the effective deployment of autonomous systems until now.
Breakthrough solutions
RLtools has successfully developed various breakthrough solutions to counter these hurdles, resulting in an impressive 75x speed-up compared to popular libraries, drastically reducing training time and resource requirements. The library also excels in resource efficiency, allowing training on consumer-grade laptops or directly on the microcontroller, a small computing device capable of operating machine learning models.
Dario Albani, Senior Director, ARRC, TII, said: “Through our dynamic synergy with NYU, the introduction and open sourcing of our RLtools library will serve as a catalyst for continuous control and unprecedented progress in reinforcement learning. By slashing training times and providing a flexible framework, RLtools promises faster and more impactful advancements in the realm of autonomous intelligence.”
Professor Giuseppe Loianno, Assistant Professor, Director of the Agile Robotics and Perception Lab, NYU, said: “RLtools is a crucial advancement in establishing the next generation of practical, resource-efficient, and adaptable autonomous systems. As our research efforts with ARRC continue, RLtools seeks to deliver more exciting solutions, making reinforcement learning a crucial aspect of future-proof intelligent machines.”
In real-time performance, RLtools-trained controllers match or surpass state-of-the-art controllers used on drones worldwide. Furthermore, the library addresses deployment challenges and is directly implemented on microcontrollers, demonstrating the first-ever training of a deep reinforcement learning algorithm on a microcontroller
Research capabilities
The RLtools collaboration outlines the outstanding research capabilities of both TII and NYU and underscores their joint commitment to innovation and flexibility. The two entities will work to create a versatile and adaptable framework to incrementally expand the library’s suite of algorithms, enhancing accuracy and extending compatibility across various platforms – both simulations and real-world applications.
The end goal is to develop a singular, all-encompassing controller capable of autonomous operations and real-time learning, adjusting its parameters dynamically based on prevailing conditions. This approach will establish a unified and resilient system, ready to navigate diverse environments with maximum precision and efficiency.--TradeArabia News Service